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• Goal: Directly Image Earth-like planets in the habitable zone (0.7 to 1.5 AU from host star)
• “Back of the envelope” (see C. Stark et al, ApJ, 795, Nov. 2014 for detailed study)

• Hipparcus catalog gives 5449 stars with d < 50 pc – can we find exo-Earth’s?
• Angular separation of a planet at 1 AU, star between 10-50 pc, is 0.1 to .02 arcsec respectively
• A star 10, 30, 50 pc away requires a telescope diameter of 3.4, 10, 17 meters for the planet (at 1 AU) to 

be resolved at 3 ⁄# $ away from star.
• For comparison, Hubble’s primary is 2.4 meters…

• A star is 10 billion times brighter than a planet!
• Direct Imaging of Exoplanets in the habitable zone therefore requires

• Large Apertures (to collect enough light)
• High-contrast imaging

• Can we design “ideal” coronagraphs for direct imaging of exoplanets in the habitable zone?

Introduction
Star, with Planet at 3 Lambda/D in Focal Plane
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Looking To the Future: Direct Imaging of Exoplanets in the Habitable Zone

Large UV/Optical/Infrared Surveyor (LUVOIR)
• 15 meter(!) segmented on-axis telescope
• High-contrast imaging with a coronagraph

Exoplanet Imaging is a Key Science Driver for Two (of Four) Large Mission Concept Studies for the 2020 Decadal Review.

Habitable Exoplanet Imaging Mission (HabEx)
• 4-6.5 meter (possibly segmented) off-axis telescope
• High-contrast imaging with a starshade (studying 

the inclusion of a coronagraph as well)



Two Designs for Large Aperture Space Telescopes

On-Axis Telescope
• Allows for larger primary mirror (greater area to 

collect more light)
• Secondary mirror and structural supports obscure the  

primary (as seen by science instruments)

Off-Axis Telescope
• Smaller primary mirror
• Secondary mirror and structural supports do NOT 

obscure the primary (as seen by science 
instruments)



A Photon’s “Roller-Coaster Ride”:
From the Primary to Science Focal Plane

• Primary Mirror receives plane-parallel wavefront (star at “infinity”)
• Curved surface of primary directs light to the secondary mirror
• Secondary reflects light back towards additional optics (flat mirrors,

etc) to bring beams into various science instruments
• Our coronagraph entrance “sees” a re-imaged pupil plane conjugate

to the telescope primary
• Inside the coronagraph instrument, various optical elements work to

suppress the starlight and let planet light through…



On-axis Source in Entrance Pupil
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Star, with Planet at 3 Lambda/D in Focal Plane
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Star, with Planet at 3 Lambda/D in Focal Plane
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How Does a Coronagraph Suppress Starlight?

On-axis Source in Entrance Pupil
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Star, with Planet at 3 Lambda/D AFTER CG in Science Focal Plane
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Star, with Planet at 3 Lambda/D AFTER Occulter
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20 40 60 80 100 120

20

40

60

80

100

120

Lyot Plane Mask

100 200 300 400 500 600

100

200

300

400

500

600

Star, with Planet at 3 Lambda/D in Focal Plane

20 40 60 80 100 120

20

40

60

80

100

120



Vortex coronagraph for unobscured telescopes
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on-axis point source,
perfect wavefront
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Mawet et al., ApJ 633 1191 (2005)

Light from point source rejected by Lyot stop for even 
(nonzero) charges. 



Example apertures used in the Segmented Coronagraph Design and Analysis (SCDA) study 
supported by the Exoplanet Exploration Program (ExEP)

• Siegler, N. and Shaklan, S., “Segmented Coronagraph Design and Analysis Task Description." Available at 
http://exep.jpl.nasa.gov/files/exep/SCDA_Summary.pdf (2016).

• Feinberg, L., Hull, T., and Knight, J., “Apertures for Segmented Coronagraph Design and Analysis.”  Available at 
http://exep.jpl.nasa.gov/files/exep/SCDAApertureDocument0504161.pdf (2016)

Can we take advantage of these benefits on 
segmented apertures?



Coronagraph Design Optimization: Beam Shaping and/or Apodization

C – coronagraph propagation 
operator

Q – dark hole region
w – “auxiliary” field
b – regularization parameter
Epup – actual conjugate pupil field

min
w

QCw 2 + b w − Epup
2( )

w = bI +C†QC( )−1bEpup

1. Solve for ideal pupil field that will 
create the specified dark hole:

2. Determine the DM surfaces 
and/or apodization that achieve 
the best match between true 
Epup and the target ideal field w.

Algorithm:

Detailed formulation of the algorithm:
J. Jewell et al, Proc. SPIE 10400, 10400H (2017).

Epup

Qw

C

Relay optics

Focal plane 
mask

Lyot stop
(in pupil)

DM1 
(in pupil)

DM2
Ω Θ

3. Repeat steps 1 and 2 until 
sufficient starlight suppression is 
obtained.  



Example Target Conjugate Plane Electric Field: LUVOIR Aperture with a 
Charge 6 Vortex Focal Plane Mask

Real Aux Field Soln  Mode 1 , Lambda 1
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The target (conjugate plane) E-field for the on-axis source has lim$→& '() * = 0 energy where planets live!

C



Focal Plane Contrast after CG : Lambda 5.775e-07
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SCDA Hex Unobscured Aperture – DM Solutions

• Charge 6 vortex in focal plane, circular Lyot stop 
(outer radius 0.99 of entrance pupil)

• 10% Band (550 nm center wavelength)
• 74 x 74 DM array (actuator pitch 400e-6 meters)
• Solution achieves 2.8e-10 broadband contrast

Fresnel Plane Phase Solution (nm)
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Application to the LUVOIR ‘A’ Architecture – Charge 6 Vortex with (Pixel) DM1 and 
DM2 Phase, 10% Band (550 nm) Science Focal Plane Dark Holes

Focal Plane Contrast after CG : Lambda 5.775e-07
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LUVOIR Aperture – Vortex Charge 4 and 6 Throughput Comparisons
Coronagraph Entrance Aperture
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These solutions are optimized for a point source and will not work with a finite stellar disc!!  
Work in progress – generalization of AFO for robustness…



A family portrait of apodizer designs

Ruane, G., Jewell, J., Mawet, D., Pueyo, L., and Shaklan, S., Proc. SPIE 9912, 9912L (2016)



Can We Improve Coronagraph Design for Segmented Apertures?

smaller stars) and the rapid quadratic increase of stellar leaks if
jcij goes above

ffiffi
!

p
/mi. For modest stellar sizes (below k /d ),

equation (6) constrains only the first few values of ci (the others
are constrained by jcij< 1). We note that adopting a zero stellar
size will result inm0 ¼ 1 andmi ¼ 0 for i > 0. In this case, equa-
tion (6) only imposes a constraint for i ¼ 0. To obtain the maxi-
mum throughput as a function of angular distance, the vector
A("p) is decomposed in the new base, and its first coefficients
are multiplied by the values of jcij derived in equation (6).

The results obtained, shown in Figure 9 and also overplotted
in Figure 7, confirm the large effect of a small increase in stellar
size on the coronagraphic IWA. In the point source case, the 50%
throughput can be reached at 0.5k /d; For a 0:1k /d-radius source,
the 50% throughput limit moves to almost 2k /d. This behavior is

contrary to a ‘‘geometrical optics’’ intuition, which would sug-
gest that increasing the stellar size by 0.1k/d moves IWA by
0.1k/d. In the linear algebra model of coronagraphy presented in
this work, this behavior is, however, understandable: as the
stellar diameter increases, a higher number of modes needs to be
removed from the wave front; each mode removed increases the
coronagraph’s ‘‘blind spot’’ by a"(k/d )2 area in the focal plane.
A coronagraph that follows exactly the limit shown in Fig-

ure 9 can be assembled from discrete beam splitters and phase
shifts as described in x 3.3.3. An example of such a design is
shown in Figure 10. A c0 ¼ 0 coronagraph is often referred to as
a second-order null coronagraph,while c0 ¼ c1 ¼ c2 ¼ 0 ensures
a fourth-order null (and so on).

4.3. Coronagraphic Imaging at Small
Angular Separation (<k /D)

In this section, our linear algebra-based model is used to pre-
dict and explain how different coronagraphs behave at small
angular separation. These results allow us to understand how
coronagraphic performance degrades as stellar angular diameter
increases, and allow us in x 4.4 to determine if wave front control
techniques can mitigate this problem.

4.3.1. Second-Order Coronagraphs (IAC, PM, 4QPM )

The smallest-IWA coronagraphs considered in this study (IAC,
PM, 4QPM) all remove mode M0 (see Fig. 8) from the incoming
wave front but ‘‘transmit’’ (at least partially) modes M1 and M2.
At very small angular separations, the ‘‘transmitted’’ wave front
is therefore dominated by a combination of modes M1 and M2.
The coefficients of this combination are proportional to the off-
axis distance, resulting in a coronagraphic residual light intensity
proportional to the square of the source’s angular separation
(second-order coronagraphs). It is therefore expected that for these
coronagraphs, the complex amplitude in the final image is also

Fig. 9.—Upper limit on the off-axis throughput of a coronagraph for dif-
ferent stellar radii.

Fig. 8.—Graphical representation of the first five modes of the orthonormal base Mi for a circular unobstructed pupil. The vectors Mi are independent of stellar
size, and their coefficients are all real numbers (no imaginary part).
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proportional to the source coordinates: the complex amplitude for
a source at position (u, v) is the opposite of the complex amplitude
for a source at position (!u,!v). At small angular separations, our
theoretical analysis therefore predicts that the images (square
modulus of the complex amplitudes) of two point sources on
opposite sides of the optical axis are identical and that, as the
source moves away from the optical axis, its image is simply mul-
tiplied by a constant but does not change structure. Both these
predictions are confirmed by numerical simulations, as shown in
Figure 11 (top three rows).

4.3.2. Other Small-IWA Coronagraphs (ICC6, OVC6, PIAAC )

Just as in the case of second-order coronagraphs, the linear
algebra-based theory outlined in the previous sections can predict /
explain the behavior of other coronagraphs at small angular
separation.

The Interferometric Combination Coronagraph (ICC6), which
will be described in x 5.3, perfectly removes the first six modes
shown in Figure 8, but leaves other modes untouched. The ‘‘trans-
mitted’’ wave front of this theoretical coronagraph at small an-
gular separation is therefore dominated by the!i(xuþ yv)3/6 term
in the polynomial expansion of e i(xuþyv), corresponding to modes
x3, y3, xy2, and x2y (not shown in Fig. 8).We can therefore predict
that along any direction, its PSF is a fixed image multiplied by the
sixth power of source angular separation and that PSFs for two
point sources on opposite sides of the optical axis will be identical.
A similar behavior is seen in Figure 11 for the OVC6, which also
removes the first six modes shown in Figure 8. Since this corona-
graph also attenuates furthermodes, the PSF structures and through-
put are, however, different from the ICC6, which is designed to
perfectly cancel the first six modes and fully transmit the others.

Finally, the PIAAC is a more complex (but also more repre-
sentative of ‘‘real world’’ coronagraphs) case: it strongly atten-
uates, but does not fully remove, modes 1 to 6 of Figure 8. At very
small angular separation (up to#10!3k/d), modeM0 dominates
the coronagraphic residual: the PSF is independent of source po-
sition. In the 10!3 to 10!2k /D range, a small residual in modes
M1 andM2 dominates and the coronagraph behaves as a second-
order coronagraph (see x 4.3.1 above). At a 0.1k/d separation and
beyond, no single mode is dominating, and several partially trans-
mitted modes interfere and/or are together to form the image: the
PSF clearly shows onwhich side of the optical axis the source is, a
behavior that cannot be achieved if the image is dominated by a
single mode since individual modes are either symmetric or anti-
symmetric in complex amplitude (and therefore always symmet-
ric in intensity).

4.4. Speckle-nulling Techniques, Stellar Size,
and Pointing Errors

Active elements (deformable mirrors) can be used to create a
coherent ‘‘anti speckle halo’’ that destructively interferes with the
unwanted residual focal plane speckles. These speckle-nulling
techniques, first proposed by Malbet et al. (1995), were more
recently studied by several authors (Codona & Angel 2004;
Labeyrie 2004; Guyon 2005; Bordé & Traub 2006) and success-
fully tested in laboratory (Trauger et al. 2003).

4.4.1. Can Speckle-nulling Techniques Mitigate Coronagraphic
Leaks Produced by Stellar Angular Size?

The star can be modeled as a set of point sources uniformly
distributed on the stellar disk (these sources are not mutually co-
herent).We first assume that a second-order coronagraph is used,

Fig. 10.—Example of a beam splitter-based coronagraphs with c0 ¼ c1 ¼ c2 ¼ 0 (perfect rejection of the first three vectorsMi) designed for a square aperture. The
telescope pupil (top left) is decomposed in a series of individual subpupils (shown in the input vector on the right of the pupil) that undergo interferometric combinations
through beam splitters. The coronagraph outputs isolate the first three modes found in an extended source, as shown in the bottom right: C (¼ M0), X (¼ M1), and Y
(¼ M2). This coronagraph produces a fourth-order null and therefore provides some immunity to stellar angular size. The same technique can be generalized to circular
pupil and better sensitivity to stellar angular size (more vectors Mi isolated).

CORONAGRAPHY 91No. 1, 2006
Credit: O. Guyon, “Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs”, 
ApJS, 167, Nov. 2006

Orthogonal Stellar Disc Modes

Beam Splitter Concept for Ideal 
Coronagraphy (perfect suppression for 
square aperture shown…)

Throughput for ideal coronagraph: 
perfect stellar disc suppression!!

transform the field to reach the final science focal plane. To fix notation, we represent the forward propagation
of the entrance pupil electric field to the final science focal plane according to

E(⇠) =
�
F⇥F

†⌦F
�
R

⇣
P

†
�
e
i�(�0/�)

P�e
i�(�0/�)

⌘
X(⇠)

= L(⇥) C(⌦) R U(�, �)X(⇠) (1)

Our goal in what follows is to view either part or all of the coronagraph as a general linear operator in a
Hilbert space, mapping modes from the entrance pupil to modes in a downstream plane (i.e. the science focal
plane). We then ask - for all bounded linear operators (with |C|  1), what is an ideal coronagraph (with ”ideal”
defined by a specific objective function to be introduced in what follows).

3. IDEAL UNITARY OPERATORS

Guyon et al (ApJS, 2006) show that the ideal coronagraph is:

CIdeal = I �
X

S.D. Modes k

|XkihXk| (2)

We assume the on-axis modes are GS orthogonalized, and further decomposed into the dark hole orthogonal
subspace and complement,

⇠j |Wji ⌘
 

I �
X

k

|gkihgk|
!
|Xji

!j |Gji ⌘
 
X

k

|gkihgk|
!
|Xji (3)

(with X̂ a unit sphere mode in the direction of X). We have the two orthogonal modes

|X̂ji = !j |Gji + ⇠j |Wji
|Ŷji = ⇠

⇤
j
|Gji � !

⇤
j
|Wji

and a 2 ⇥ 2 unitary operator (together with the unitary orthogonal subspace part)

Uj = |WjihX̂j |� |GjihŶj |� (I � |WjihWj |� |GjihGj |) (4)

For example,

U1 = |W1ihX̂1|� |G1ihŶ1|� (I � |W1ihW1|� |G1ihG1|) (5)

results in

U1|X1i = �1|W1i
U1|X2i = |G1ihY1|X2i � (|X2i � |W1ihW1|X2i � |G1ihG1|X2i)

= ↵2|G2i + �2|W2i (6)

This shows that since hU1X1|U1X2i = hX1|X2i = 0 we have hW1|W2i = 0, and setting

|X̂12i = !2|G2i + ⇠2|W2i
|Ŷ12i = ⇠

⇤
2 |G2i � !

⇤
2 |W2i

We can then set

U2 = |W2ihX̂12|� |G2ihŶ12|� (I � |W2ihW2|� |G2ihG2|) (7)



Ideal Coronagraphs for Centrally-Obscured Segmented Apertures

Coronagraph Entrance Aperture
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Replace with “Ideal Unitary Operator”

• Generalize Guyon et al, 2006 “Theoretical Ideal Coronagraphs” to explore simulation of a 
coronagraph built with standard focal plane mask and Lyot stop, but “ideal” block box unitary 
operator (instead of DM’s)

• Why?
• Guide to technology development
• Allows ”best case” sensitivity analysis, and can generalize to add robustness
• Can compare DM or Apodization components with “upstream” theoretical ideal performance 

(for fixed downstream coronagraph focal and Lyot plane masks)
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where the second line follows since by construction we designed U to map Xj ! Wj . Note that we could
have explicitly ”simulated” this as follows. We assume the on-axis modes are GS orthogonalized, and
further decomposed into the dark hole and orthogonal subspace,
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(with X̂ a unit sphere mode in the direction of X). We have the two orthogonal modes

|X̂ji = !j |Gji + ⇠j |Wji
|Ŷji = ⇠

⇤
j
|Gji � !

⇤
j
|Wji

and a 2 ⇥ 2 unitary operator (together with the unitary orthogonal subspace part)

Uj = |WjihX̂j |� |GjihŶj |� (I � |WjihWj |� |GjihGj |) (59)

For example,

U1 = |W1ihX̂1|� |G1ihŶ1|� (I � |W1ihW1|� |G1ihG1|) (60)

results in

U1|X1i = �1|W1i
U1|X2i = |G1ihY1|X2i � (|X2i � |W1ihW1|X2i � |G1ihG1|X2i)

= ↵2|G2i + �2|W2i (61)

This shows that since hU1X1|U1X2i = hX1|X2i = 0 we have hW1|W2i = 0, and setting

|X̂12i = !2|G2i + ⇠2|W2i
|Ŷ12i = ⇠

⇤
2 |G2i � !

⇤
2 |W2i

We can then set

U2 = |W2ihX̂12|� |G2ihŶ12|� (I � |W2ihW2|� |G2ihG2|) (62)

Continuing again this results in

U2U1|X1i = �1|W1i
U2U1|X2i = �2|W2i
U2U1|X3i = ↵3|G3i + �3|W3i (63)

where as before we compute |W3i after we perform the unitary rotation U2U1. Of course, since orthogonality
is preserved, we have {W1, W2, W3} all mutually orthogonal, and again we set

U3 = |W3ihX̂123|� |G3ihŶ123|� (I � |W3ihW3|� |G3ihG3|) (64)

For K null space modes we have the recursion
0

@
Y

j=1:n�1

Uj

1

A |Xn�1i = �n�1|Wn�1i

0

@
Y

j=1:n�1

Uj

1

A |Xni = ↵n|Gni + �n|Wni

Un = |WnihX̂n|� |GnihŶn|� (I � |WnihWn|� |GnihGn|) (65)

and where we have hWm|Wni = 0.
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U1 = |W1ihX̂1|� |G1ihŶ1|� (I � |W1ihW1|� |G1ihG1|) (60)

results in

U1|X1i = �1|W1i
U1|X2i = |G1ihY1|X2i � (|X2i � |W1ihW1|X2i � |G1ihG1|X2i)

= ↵2|G2i + �2|W2i (61)

This shows that since hU1X1|U1X2i = hX1|X2i = 0 we have hW1|W2i = 0, and setting

|X̂12i = !2|G2i + ⇠2|W2i
|Ŷ12i = ⇠

⇤
2 |G2i � !

⇤
2 |W2i

We can then set
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U1 = |W1ihX̂1|� |G1ihŶ1|� (I � |W1ihW1|� |G1ihG1|) (60)

results in

U1|X1i = �1|W1i
U1|X2i = |G1ihY1|X2i � (|X2i � |W1ihW1|X2i � |G1ihG1|X2i)

= ↵2|G2i + �2|W2i (61)

This shows that since hU1X1|U1X2i = hX1|X2i = 0 we have hW1|W2i = 0, and setting

|X̂12i = !2|G2i + ⇠2|W2i
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U2 = |W2ihX̂12|� |G2ihŶ12|� (I � |W2ihW2|� |G2ihG2|) (62)

Continuing again this results in

U2U1|X1i = �1|W1i
U2U1|X2i = �2|W2i
U2U1|X3i = ↵3|G3i + �3|W3i (63)

where as before we compute |W3i after we perform the unitary rotation U2U1. Of course, since orthogonality
is preserved, we have {W1, W2, W3} all mutually orthogonal, and again we set
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Unitary Operator for K Modes to be Suppressed

transform the field to reach the final science focal plane. To fix notation, we represent the forward propagation
of the entrance pupil electric field to the final science focal plane according to

E(⇠) =
�
F⇥F

†⌦F
�
R

⇣
P

†
�
e
i�(�0/�)

P�e
i�(�0/�)

⌘
X(⇠)

= L(⇥) C(⌦) R U(�, �)X(⇠) (1)

Our goal in what follows is to view either part or all of the coronagraph as a general linear operator in a
Hilbert space, mapping modes from the entrance pupil to modes in a downstream plane (i.e. the science focal
plane). We then ask - for all bounded linear operators (with |C|  1), what is an ideal coronagraph (with ”ideal”
defined by a specific objective function to be introduced in what follows).

3. IDEAL UNITARY OPERATORS

We assume the on-axis modes are GS orthogonalized, and further decomposed into the dark hole orthogonal
subspace and complement,
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This shows that since hU1X1|U1X2i = hX1|X2i = 0 we have hW1|W2i = 0, and setting
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|Ŷ12i = ⇠
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We can then set

U2 = |W2ihX̂12|� |G2ihŶ12|� (I � |W2ihW2|� |G2ihG2|) (6)

Continuing again this results in
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U2U1|X3i = ↵3|G3i + �3|W3i (7)
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|Ŷji = ⇠

⇤
j
|Gji � !

⇤
j
|Wji

and a 2 ⇥ 2 unitary operator (together with the unitary orthogonal subspace part)
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where as before we compute |W3i after we perform the unitary rotation U2U1. Of course, since orthogonality is
preserved, we have {W1, W2, W3} all mutually orthogonal, and again we set
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Another equivalent representation for U of course is first to write
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so that

U =
⇣
⇠
⇤
j
|X̂jihX̂j |� !j |ŶjihX̂j |
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In what follows we would like to put our unitary operator in the form

Y

K
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X

1:2K

e
i⇢k | kih k|

!
�
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X
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| kih k|
!

(13)

equivalent to the ”input-output” form

Y

K

Uk =
Y

1:K

[|WkihXk| + |GkihYk|� (I � |XkihXk|� |YkihYk|)] (14)

Unitary Operator for K Suppressed Modes =
Y

1:K

Uk

Notes:

• Broadband Generalization (idea generated during conversations with S. Shaklan, Nov. 30, 2017) We
form the above at the center wavelength. We then add on the stellar disc modes at the other wavelengths,
but Gram-Schmidt orthogonalized from the center wavelength modes. And we continue adding on unitary
operators. This gives a complete spatial mode basis to null out specified band (the coe�cients of the modes
are now what are wavelength dependent).



Unitary Operator: Entrance to Conjugate Pupil Plane “Input/Output” 
Eigenmode Decomposition
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Ideal Coronagraph: LUVOIR ‘A’ Aperture, Null Stellar Disc
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; (1)

corresponds to a lossless beam splitter between channels m and n
with reflectivity cos θ (θ ∈ %0; π∕2 &) and a phase shift ϕ
(ϕ ∈ %0; 2 π&) at input m. In the following, we will generally omit
the explicit dependence of these Tm;n!θ;ϕ" matrices on θ and ϕ
for notational simplicity.

Both our scheme and the scheme by Reck et al. [5] are based
on analytical methods of decomposing the U matrix into a prod-
uct of Tm;n matrices. Specifically, these schemes provide an
explicit algorithm for writing any unitary matrix U as

U # D
! Y

!m;n"∈S
T m;n

"
; (2)

where S defines a specific ordered sequence of two-mode trans-
formations and where D is a diagonal matrix with complex ele-
ments with a modulus equal to one on the diagonal. A physical
interferometer composed of beam splitters and phase shifters in
the configuration defined by S, with values defined by the θ and ϕ
in the Tm;n matrices, will therefore implement transformation U .
We note that D is physically irrelevant for most applications but
can be implemented in an interferometer nonetheless by phase
shifts on all individual channels at the output of an interferometer.

The formalism developed here for unitary transformations
describing lossless N ×N interferometers can be extended to in-
clude any M ×N linear (non-unitary) transformation. Indeed, it
has been noted that any M ×N linear transformation, with, for
example, M ≤ N (resp. M ≥ N), can be either directly em-
bedded within a 2N × 2N (resp. 2M × 2M ) unitary transforma-
tion [12] to within a scaling factor, or, in a more compact way,
implemented by 2 separateN ×N (resp.M ×M ) interferometers
connected to each other via phase and amplitude modulators
[10]. Furthermore, realistic, lossy interferometers can also be
included in our formalism simply by rescaling U by a loss factor,
as we explain later. Therefore, our design for universal multiport
interferometers, as well as that by Reck et al. [5], can be used to
implement any linear transformation to within a scaling factor on
any number of input and output channels. While our design is
very general and can be used for any interferometric transforma-
tion, more efficient architectures may exist for specific values ofN
orM whenN ≠ M (see [13] forN orM # 1, for example) or for
specific transformations (see [14] for implementing Fourier trans-
forms, for example).

3. OVERVIEW OF THE TWO DESIGNS

Schematic views of the Reck design and of our design are pre-
sented in Fig. 1. Figure 1(a) presents the Reck design, in which
the matrix decomposition method determines a sequence S that
corresponds to a triangular mesh of beam splitters. Figure 1(b)
presents our design, in which every mode crosses its nearest neigh-
bor at the first possible occasion. Our design has a shorter optical
depth and is more symmetrical than the Reck design. We
note that both interferometers use the same minimal number
N!N − 1"∕2 of beam splitters to implement an N ×N interfer-
ometer [5].

Fig. 1. UniversalN-mode multiport interferometer (shown here forN # 9 ) can be implemented using a mesh ofN!N − 1"∕2 beam splitters such as
(a) the one proposed by Reck et al. or (b) the one we demonstrate in this paper. As shown in (c), a line corresponds to an optical mode, and crossings
between two modes correspond to a variable beam splitter described by a Tm;n!θ;ϕ" matrix, which can be implemented by a Mach–Zehnder inter-
ferometer consisting of two 50:50 directional couplers, preceded by a phase shift at one input port. Although the total number of beam splitters in both
interferometers is identical, our scheme clearly has a much shorter optical depth and therefore suffers less propagation loss. This reduction in optical depth
stems from the fact that each mode crosses its nearest neighbor at the first possible occasion in contrast to the Reck scheme, where the top modes must
propagate for some distance before interacting with other modes. Furthermore, the high symmetry inherent to our design improves the loss tolerance of
the interferometer, as we show in the main text.

Research Article Vol. 3, No. 12 / December 2016 / Optica 1461

Figure 1: (Figure Credit: W. Clements et al., ”Optimal Design for Universal Multiport Interferometers”,
Optica, 3,2016 [2]) A unitary operator for N = 9 inputs and outputs. Any unitary operator on 9 inputs can
be constructed as shown above, with a cascade of 2⇥ 2 unitary operators composed of two Mach-Zehnder
beam splitters and phase shifters. Our central goal is the fabrication of an 6  N  10 input/output

photonic integrated chip, and demonstration of precision measurement of the full input / output response,

as required for future assimilation into designs of advanced astronomical instruments.

waveguides, N(N �1)/2 = 30 Mach-Zehnder interferometers with programmable phase shifters, and
N single-mode output waveguides. The PIC will be designed using commercially available software,
and fabricated as part of a multi-project wafer run with the American Institute for Manufacturing
Integrated Photonics (AIM Photonics) [3].

• Task 3: PIC Testing We will perform extensive testbed measurements on the fabricated PIC
fabricated under Task 2. Performance aspects that will be investigated using monochromatic light
include the overall input-output system response matrix, including throughput losses, and stability.
Additionally, chromatic system e↵ects will be evaluated using either a tunable laser source (with a
total approximate bandwidth of 50 nm) and/or a broadband amplified spontaneous emission source
(approximate bandwidth of 200 nm).

• Task 4: PIC Coronagraphy Demonstration: Stretch Goal (if possible with timeline and budget) We
will perform a proof-of-concept laboratory demonstration of coronagraphy using the PIC fabricated
under Task 2. The testbed constructed under Task 3 will be modified to accept input light from
a pair of far-field point sources, one which represents a bright on-axis star and the other which
represents a dim o↵-axis planet. The light from these point sources will feed a one-dimensional
array of waveguides feeding the PIC, with the PIC output waveguides re-imaged onto a focal plane
detector array. The goal of the experiment is to demonstrate suppression of light from the on-axis
point source with maximal throughput of light for the o↵-axis point source using PIC phase-shifter
settings as commanded by a closed-loop control algorithm (building on our input/output transfer
matrix and model uncertainty quantification developed under tasks 1 and 3).

1.2 Perceived Impact to State of Knowledge

1.2.1 Implementation of Unitary Operators with Advanced Photonics

Developing optical components capable of universal linear operations on light can open the door to many
new instrument concepts for future NASA astrophysics missions. The essential functionality of our pro-
posed ULO-PIC is the ability to perform decomposition of light into a specified collection of orthogonal

2
Use or disclosure of information contained on this sheet is subject to the restriction on the cover page of

this proposal.

• (Figure: W. Clements et al, “Optimal Design for Universal Linear Multiport Interferometers”, Optica, 3, 2016)
• Any NxN unitary operator can be implemented with N(N-1)/2 2x2 operators, each with 2 Mach-Zehnder

(50:50) beam splitters and phase shifters! ( Reck et al, “Experimental Realization of Any Discrete Unitary 
Operator”,  Physical Review Letters, 73(1), 1994).
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FIG. 1. Universal linear optical processor (LPU). (a) Decomposition of a fully parametrised unitary for an m-mode circuit
to realise any LO operation. Sub-unitaries Di consist of Mach-Zehnder interferometers Mi,j (MZIs) built from phase shifters
(yellow) and beam splitters, to control photon amplitudes (↵i,j) and phases (�i,j). (b) Multi-photon ensembles are generated
via spontaneous parametric down-conversion (SPDC), comprising a BiBO crystal, dichroic mirrors (DM) and interference filter
(IF); preceded by a pulsed Ti:sapphire laser and second harmonic generation from a BBO crystal. Photons are collected into
polarisation maintaining fibers and delivered to the LPU via a packaged v-groove fibre array. The processor is constructed over
six modes as a cascade of 15 Mach-Zehnder interferometers, controlled by 30 thermo-optic phase shifters, set by a digital-to-
analgoue converter (DAC) and actively cooled by a Peltier cooling unit. Photons are then out-coupled into a 2nd packaged
VGA and sent to 6 (or 12 with fibre splitters for single-mode photon number resolving capability) single photon avalanche
diodes (SPADs) and counted using a 12-channel time-correlated single-photon counting module (TCSPC). See Appendix for
further details.

Such operation can be understood, with reference to
the schematic shown in Fig. 1(a), as a sequence of m

sub-unitaries Di, each of which is guaranteed to enable
transformation of the state of a photon input in its top
mode into an arbitrary superposition of all its output
modes. The top MZI in each Di is set to retain the
desired probability for a photon occupying the top mode,
before imparting the desired phase on the top mode. The
remainder of the photon undergoes a similar operation on
the subsequent modes. Full reconfigurability is realised
by feeding all output modes from one Di0 into all but the
uppermost input mode of the following Di0�1 [17].

Realising such a scheme requires sub-wavelength
stability and high fidelity components to support both
classical and quantum interference — possibilities
opened up by integrated quantum photonics [18–26]. A
schematic of our LPU is shown in Fig. 1(b). The device,
made with planar lightwave circuit (PLC) technology
[27, 28], comprises an array of 30 silica-on-silicon
waveguide directional couplers with 30 electronically

controlled thermo-optic phase shifters, to form a cas-
cade of 15 MZIs across six modes (see Appendix for
further details). Such an LPU can implement any LO
protocol, and here we focus on several protocols at the
forefront of quantum information science and technology.

Quantum gates: With the addition of single pho-
ton sources and measurements, and rapid feed-forward
of classical information, both the circuit [4] and
measurement-based [8–10] models of digital quantum
computing can be e�ciently implemented with LO. Ba-
sic two-qubit processes are realised probabilistically with
LO circuitry, therefore a key requirement for scalability is
that a successful operation is heralded by the detection of
ancillary photons, to signal that the processed photonic
qubits are available for use in the larger architecture [29].

We programmed our device to implement a new com-
pact four-photon scheme, suitable for measurement-
based quantum computing, which generates the entan-
gled state of two photonic qubits upon the detection of
another two ancilla photons, schematically displayed in

Ref. J. Carolan et al, “Universal Linear Optics”,
Science, 349, 2015. 

 
 

 
 

 
 

etch rate of the material. Using these modifications, it is possible to directly inscribe a variety of structures and devices 
inside the bulk of the dielectric material. For example, using ULI and selective chemical etching [5], it is possible to 
fabricate both surface [6] and sub-surface microfluidics [7], which can also be combined with optical waveguides [8] and 
micro-mechanics [9]. ULI combined with selective chemical etching can also be used to create freeform micro-optics 
[10], which can be seamlessly combined with passive alignment structures for optical fibres [11]. It is, however, ULI’s 
capability to locally and permanently modify the refractive index of a dielectric material that has attracted the most 
attention over the past two decades. Using this capability, it is possible to fabricate structures such as fibre Bragg-
gratings (FBGs) [12-14], volume gratings [15, 16] and optical waveguides [17], with a plethora of potential applications 
in areas such as astronomy [18 - 21], quantum optics [22 - 24], optical analogues [25 - 27] and biophysics [28]. In the 
following section, I review how the unique three-dimensional waveguide fabrication capability of ULI can enable the 
fabrication of interconnect technologies for a variety of different SDM fibres. 

 

3. ULTRAFAST LASER INSCRIPTION OF SDM INTERCONNECTS 
3.1 ULI components for interconnecting to single-mode MCFs 

In 2007, we demonstrated that the three-dimensional waveguide fabrication capability of ULI could be used to fabricate 
a 3D waveguide fan-out device capable of coupling the light from a 4-core MCF to a linear array [29]. This proof-of-
concept device exhibited a relatively low throughout, with an average throughput of 5.0 dB for each core in the 1.55 µm 
spectral region. Subsequent developments in an industrial environment by Optoscribe Ltd (of which the author is a Co-
Founder) have successfully pushed this loss to <1dB [30]. As shown in Fig 1., this fan-out technology has now also been 
extended to high core-count fibres containing >100 cores [31] (Fig. 1), and there is no fundamental reason why such 
devices cannot also achieve losses < 1.0 dB. 
 

  
Figure 1. (Left) Top – Optical micrograph of a 121 core MCF, Bottom – Optical micrograph of the MCF coupling end of a 
121 core fan-out device. (Right) Schematic diagram of a 121 core 3D fan-out device. 

 

3.2 ULI components for interconnecting to FMFs 

3.2.1 Integrated photonic lanterns 

Three-dimensional integrated fan-outs (of the type shown in Fig. 1) are suitable for coupling to and from single-mode 
MCFs, but they do not enable the coupling of light to and from FMFs. One technology that can facilitate this is the 
photonic lantern [32, 33], a gradual adiabatic waveguide transition between a set of single-mode waveguides and a single 
multimode waveguide. Photonic lanterns can be fabricated using fibre optic approaches [32], and fibre optic photonic 

Proc. of SPIE Vol. 9774  97740O-2
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121 MCF to Fan-Out Device (3D Laser Inscription):
Ref. R. Thomson, Proc SPIE, 977400, 13 Feb. 2016
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”Nearly Lossless” Compression of Modes : Entrance Pupil to Focal Plane
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• Comparison of PSF of aperture and after the Lantern array, with the 
PIC set to the “Identity”.

• PSF core’s out to the design OWA retained with 90% of the light (can 
be increased with more lantern modes)



Unitary Operator: Lantern ”Coefficient Basis” Eigenmode Decomposition
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”Nearly Lossless” Compression of Modes : Entrance Pupil to Focal Plane

Epup

Qw

Focal plane 
mask

Lyot stop
(in pupil)

Ω Θ
Focal Plane Lenslet Array

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

1000

Focal Plane Lenslet Array

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

1000U

Entrance Pupil Aperture

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized PSF after CG: Off-axis (lambda/D) 10

20 40 60 80 100 120

20

40

60

80

100

120

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normalized PSF after CG: Off-axis (lambda/D) 9

20 40 60 80 100 120

20

40

60

80

100

120

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Normalized PSF after CG: Off-axis (lambda/D) 5

20 40 60 80 100 120

20

40

60

80

100

120

0.05

0.1

0.15

0.2

0.25

Normalized PSF after CG: Off-axis (lambda/D) 4

20 40 60 80 100 120

20

40

60

80

100

120

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized PSF after CG: Off-axis (lambda/D) 3

20 40 60 80 100 120

20

40

60

80

100

120

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Normalized PSF after CG: Off-axis (lambda/D) 2

20 40 60 80 100 120

20

40

60

80

100

120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Normalized PSF after CG: Off-axis (lambda/D) 1

20 40 60 80 100 120

20

40

60

80

100

120

0.005

0.01

0.015

0.02

0.025

Log Normalized PSF after CG for Fiber Mode Aux Field : Lambda 1

20 40 60 80 100 120

20

40

60

80

100

120 -12

-11

-10

-9

-8

-7

-6

-5



Segment RB Sensitivity: 10 nm Segment RB, 15 pm WFS Measurement Error
Log Normalized PSF after CG: Mode 1
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Log Normalized PSF after CG, Measurement WFE 1.5e-11 : Mode 1
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• Upper Left – Stellar Disc Modes Completely Suppressed 
for RB segment errors IF perfectly measured

• Center – 15 pm (per segment RB d.o.f) WFS 
measurement error

• Bottom Left – Contrast degradation (< 1.0e-10)
• Upper Right – Throughput



Summary

• “Auxiliary Field Optimization” (AFO) algorithm for coronagraph design for segmented 

aperture space telescopes, with applications to LUVOIR and HabEx
• Algorithm Details:

J. Jewell, G. Ruane, S. Shaklan, D. Mawet, D. Redding, Proc. SPIE, 10400, 10400H, 2017.
• Apodization solutions (Segmented Coronagraph Design & Analysis catalog):

G. Ruane, J. Jewell, D. Mawet, L. Pueyo, S. Shaklan, Proc. SPIE, 9912, 9912L, 2016.
• Apodization solutions with detailed performance and sensitivity analysis:

G. Ruane, D. Mawet, J. Jewell, S. Shaklan, Proc. SPIE, 10400, 10400J, 2017.
G. Ruane, D. Mawet, B. Mennesson, J. Jewell, S. Shaklan, arXiv:1803.03909(accepted for publication, JATIS, 
2018)

• General “null space” suppression (i.e. finite stellar disc)
• Unsolved Problem (for central obscuration apertures) - achieving “ideal coronagraph” throughput 

limits with broadband suppression of stellar disc modes

• New Result - Analytic unitary operators for any aperture and downstream coronagraph

• New Path for Technology Development - explore advances in photonics and Photonic Integrated Chip 

technology for high-contrast imaging

• What will state-of-the-art segmented aperture telescope and high-contrast imaging 
instrument designs look like after the next 10 years of development??
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